
Combinatorial Service Rendezvous Middleware
(CSRM)

Benjamin Gooder BS∗, Rasib Khan PhD∗, Paul-Rus Adrian BS†, Kokou Sossoe BS∗
∗Northern Kentucky University, †Babes Bolyai University, Romania

Email: ∗gooderb1@nku.edu, ∗khanr2@nku.edu, †rusp1@nku.edu, ∗sossoek1@nku.edu

Abstract—Coordination between IoT devices is a significant
challenge hindering the realization of a truly smart world. We
propose a system that implements a Combinatorial Service Ren-
dezvous Middleware (CSRM) that matches subscriber devices’
requests with publisher devices’ services. Our system extends that
of a simple matching system by coordinating the combination of
published services to create a new, unique service that best meets
the subscriber device’s original request. We propose and test a
matching algorithm to be used by the CSRM.

I. INTRODUCTION

The Internet of Things (IoT) is a highly connected ecosys-
tem of connected physical objects. Information and commu-
nication systems are invisibly embedded in the environment
around us. IoT objects “speak” to each other in interoperable
data formats [1]. Data is stored, processed and presented in
a seamless, efficient and easily interpretable form. IoT has
direct applications and involves new paradigms of software
development in fields, such as home-automation, ambient
assisted living, healthcare, smart-cities, industrial management
and artificial intelligent computing [2].

A basic IoT system architecture is composed with: (i) the
physical layer that contains embedded devices, (ii) the gateway
layer that provides the mechanism and protocols for devices to
expose their sensed data to the Internet (e.g. Wi-Fi, Ethernet,
GSM, etc.). (iii) The middle-ware layer that facilitates and
manages the communication between the real world sensed
activities and the application layer. (iv)The application layer
that assemble applications that can be used by the consumer
to send commands to devices over the Internet via mobile ap-
plications, web apps, etc. [3]. A classical distributed software
model does not fit well with IoT network of heterogeneous
devices which collaborate with each other to deliver valuable
functionalities to end users.

A Service Oriented Architecture (SOA) on the other side
offers an adequate framework to enhance connectivity, in-
teroperability and integration in IoT systems, it is the most
used architecture for IoT frameworks. But with the expansion
of today’s IoT systems, SOA framework becomes limited.
The adoption of microservices help manage easily systems
extensibility and is a solution for poor service integration,
scalability and fault tolerance in IoT. Because the true value
of IoT lies in the interaction of several services from physical
things, answers to this question are essential to support a rapid
creation of new IoT smart and ubiquitous applications. The
problem is known as service composition [4].

Our project’s aim is to create a middleware that can handle
this data, make the necessary combinations based on user’s
queries and send the resulting data back to the user. This
project can then be used to combine 2 or more services for the
clients to use later on, either as a continuous stream of data
with the server as a middle point, or just give the IP addresses
to the user for him to decide what to do later on.

One of the major limitations of this study is that the
proposed architecture was not tested in the real world with
a specific use case.

Our contributions in this paper are as follows:
• We propose an architecture based on microservices where

a service assembler is introduced to manage consumer
request and services coupling

• We provide an algorithm to accomplish the matching of
services and then their combination to provide a unique
service to the requester/user

The paper is organized as follows: the next session summa-
rizes the related works. Section 3 presents a detailed discussion
of the proposed model and architecture. In Section 4, we
present the proposed matching algorithm. Section 5 shows the
result of the tests conducted with our proposed middleware.
Finally, we conclude and propose future works.

II. BACKGROUND

Realization of a smart world comprised of pervasive IoT
devices in a distributed network requires an increidble degree
of coordination, standardization, standardization, and flexibil-
ity. As the number of IoT devices increases, so do the number
and variety of services that they offer. This quickly introduces
the need of an automatic and scalable approach for services’
discovery, selection, and combination to respond to consumer
requests.

The rendezvous of publishers’ services and a subscriber
request is achieved by the two meeting at an intermediate node.
In the context of webservices, there are many systems that
allow for matchmaking between user’s needs and published
services at a semantic level using ontological frameworks such
as those employed by OWL-S [5] and WSMO [6]. To address
the problems encountered in semantic matchmaking such as
high heterogeneity between the various semantic models used
across service providers, ontology matching techniques exist
(based on syntactic, structural or semantic features) to align
semantic models with each other [8].



Unfortunately, most matchmaking techniques require human
input in order to register the published service or to explic-
itly map the relationship between users and the individual
service. Practically, this is potentially a major bottleneck in
the scalability of IoT. Additionally, due to the amount of IoT
devices, the lack of interface standardization, and the general
heterogeneity between IoT devices, no system currently gives
participating publishers and subscribers the ability to combine
and request services dynamically. As IoT matures as a field
and transitions from theory to actualization, a system such as
this will be needed more and more.

III. CSRM SYSTEM

A. System Components

1) Publisher Device (P): A publisher device is any IoT
device that is collecting and publishing data. A publisher
device has at least one capability by which it collects said
data. A publisher device connects with the Combinatorial
Service Rendezvous Middleware, provides it with a list of
its capabilities’ requirements, and can publish the capability’s
data asked of it by the middleware.

2) Capability (C): A capability is the medium by which the
publisher device collects data. Therefore, the capability often
defines the type of data it collects (e.g. video, audio, temper-
ature, etc.) A capability should have at least one requirement.
A capability’s role is to collect data on behalf of the publisher
device.

3) Requirement (R): A requirement is a specific character-
istic of data. Requirements are used to uniquely identify either
the data that is being collected by each individual publisher
device’s capability. They are also used to specify the data that
comprises the user requested service. A requirement could
be the location of the publisher device or a timestamp of
the capability’s collection of data. Requirements are used to
uniquely identify either the data that is being collected by
each individual publisher device’s capability or the data that
comprises the user requested service.

4) Middleware (CSRM): Middleware for IoT devices acts
as a bond joining the heterogeneous domains of applica-
tions communicating over heterogeneous interfaces [20]. The
Combinatorial Service Rendezvous Middleware (CSRM) goes
beyond the stated definition of middleware in that it can
match the requirements of a user device’s service request to
the requirements of one or more publisher devices’ capabil-
ities. This matching would then determine which publisher
devices’ capabilities’ data sets could be combined to create
the requested service. The CSRM would then combine the
previously stated data sets to provide a single, unique service.
Finally, the CSRM will deliver this unique service to the user
device by establishing a session between the user and the
service or services.

5) User Device (U): A user device is the device on which
the user can both request and receive the requested service. A
requested service has at least one requirement. It requests a
service from the CSRM by specifying the requirements of the

data it wants to receive. It must also be capable of receiving
the CSRM’s new service’s data.

B. System Architecture

On a global level, our system is composed of different
devices D where: D = (D1, D2, . . ., Dm) connected with
each other and which have different capabilities C where: C =
[C1, C2, . . ., Co]. Capabilities are composed of requirements
R where: R = [R1, R2, . . ., Rn] which can be expressed
as XML files. Capabilities are properties of Publisher devices
which are advertised by different nodes. The user can send
requests to the middleware through an internet connection.

If a user wants to experience a particular service character-
ized by specific requirements, it would make a request to the
CSRM. The CSRM will search for and locate this user node
which is requesting a particular service, and then the CSRM
will combine devices to have a combination of capabilities
to provide the service back to the user. This type of system
which combines capabilities from IoT publisher devices to
provide a unique service is best realized within the context of a
distributed system architecture. To attain a scalable and fault-
tolerant IoT framework we propose the adoption of microser-
vices and a service-oriented architecture. Interactions between
different services are conveniently handled in microservices
architecture.

A Service Assembler is introduced to handle consumer
request and service coupling (combining two or more services
to generate a new functional service X which adheres to the
service contract of the consumer based on the implementation
details) and will be beneficial in reducing the call time [21].
Fig. 1 represents our system implementing a microservice
architecture.

C. Communication Protocols

Fig. 3 depicts how a new publisher device interacts with
the CSRM. At first, the new device connects to the CSRM.
The server asks the new publisher device for its capabilities
and requirements. These are then stored inside the CSRM’s
database alongside a unique publisher device ID. At the end,
the server sends an acknowledgment to the device to confirm
its successful registration and connection to the system. Fig. 4
shows the protocol for how a subscriber device would request
a combination of services from the CSRM. The subscriber
device connects to the CSRM and then sends it the capabilities
and requirements that characterize the requested service. The
CSRM queries its internal database for a list of publisher
devices that could fulfill the request. For each viable publisher
device, the CSRM requests the publisher’s serivce, whether
continuous or for based on a time-stamp, and combines the
resulting data into one service. This combined service is then
sent to the user.

IV. EXPERIMENTS

A. Prototype Implementation

The prototype of our project has 2 main components: the
networking component and the “Search and Match” compo-



nent. These 2 components would later be merged into one
project that would fulfill our aims for the final demonstration.

The first component, the networking one, deals with creat-
ing the necessary implementation of a working server-client
program. This implementation would contain 3 sub-programs:
the server, the user client and the IoT device client.

The IoT device client would collect data from an IoT device,
however in this case the data is hard-coded by the programmer.
This data would then be sent to the server over the network
so that the server may store it in a local database. In our
implementation, the data is an object called “Element”. This
object contains 2 lists that contain all the capabilities and
metadata of the IoT device and the Network-IP of the device,
which would act as a unique identifier. The server, also called
the middleware, acts as a connecting hub between the IoT
devices and the user. The server would receive the necessary
data from all IoT devices connected to it and store it in its local
database. The user client would then send over an “Element”
object of its own, through which the server would try and find
close enough matches and insert them into a list of elements,
along with a percentage of each of the elements’ matching the
original specifications given by the client. This list is later sent
on to the user client.

The user client would create the “Element” object, which
would act as specifications for the “Search and Match” al-
gorithm run on the server. After the server has sent back
its results, the user client would present these results on the
screen for the user to choose 1 or more of the given results.
The second component deals with the “Search and Match”
algorithm implemented in the CSRM. This function simply
iterates through the user’s requirements and searches for
any available published services with the same requirements.
Partial matching is allowed for in this function.

B. Experimentation Environment

The success of this CSRM solution and its surrounding
architecture is largely based on the specific use case of the
user. Because of this, determining the specific test environment
was difficult to do without allowing too much bias towards a
specific anticipated use case. It is the authors’ opinions that
case studies based on the parameters inherent to a specific use
case be tested in future research. Due to the generality of this
study in regard to the proposed architecture’s use case, tests
in this study were run on a simulated environment.

A single User device’s service request was initialized with
between 1 and 100 requirements. This number was chosen
randomly at the beginning of each simulated test. Each specific
requirement was randomly initialized from a list of 500
unique requirements. 100,000 Publisher devices were each
initialized with a random number of requirements between
1 and 100 requirements. Like the requirements that make up
the user request, the Publisher devices’ specific requirements
were randomly initialized from the same list of 500 unique
requirements.

C. Results, Evaluation, and Analysis

These tests measured the coverage of the User device’s
request (i.e. the number of matched requirements divided
by the number of requested requirements). Each test also
measured the speed of the matching algorithm. Though each
test created an entirely new environment, the algorithm speed
metric was only measured from the beginning of the search
and match algorithm to the point where the CSRM had made
a final list of responses to the final user requested service
requirements.

An average coverage percentage of 25.25% and an average
matching algorithm speed of 543 milliseconds was found over
the course of 1000 simulated tests. It’s important to note the
limitations of these tests. Since the tests were simulated and
all of the requirements were randomly selected, this simulated
test environment does not likely reflect the way in which a real
user device would choose the requirements for its requested
service. In addition to this, the speed of the matching algorithm
does not account for the time taken by the CSRM to combine
the publishers’ services.

V. CONCLUSION

The development of IoT software infrastructures encounter
new problems related to networking and composition as-
pects. In this paper, we proposed an architecture based on
microservices which integrate a service assembler in charge
of managing consumer request and services coupling. The
proposed architecture facilitates service identification, classi-
fication, combination and choreography and allows for ease
of deployment, inter-domain communication and lightweight
implementation. A middleware was proposed for the matching
of services as well as their combination to provide a unique
service that satisfies the original request of the user.

Future work ought to extend the findings of this study by
applying the proposed architecture to a specific use case. One
possible use case could include the combination of multiple
video feeds to create 3 dimensional models. Another use case
would be querying multiple environmental monitoring services
to determine when the optimal time would be to interact with
the environment in a specific way (e.g. watering, fertilizing,
weed-killing, crop-rotation, etc.). Our work could be extended
by implementing a service auditor that will control the quality
of the service proposed to the user and how it will cooperate
with the service assembler to propose a new combination of
services. Finally, more efficient matching algorithms should
be introduced into the CSRM in order to optimize service
discovery and coupling.


